Quasi-bi-Hamiltonian systems and separability

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 302799
(http://iopscience.iop.org/0305-4470/30/8/023)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.112
The article was downloaded on 02/06/2010 at 06:16

Please note that terms and conditions apply.

Quasi-bi-Hamiltonian systems and separability

C Morosi $\dagger \S$ and G Tondo $\ddagger \|$
\dagger Dipartimento di Matematica, Politecnico di Milano, Piazza L Da Vinci 32, I-20133 Milano, Italy
\ddagger Dipartimento di Scienze Matematiche, Università degli Studi di Trieste, Piazzale Europa 1, I-34127 Trieste, Italy

Received 12 November 1996

Abstract

Two quasi-bi-Hamiltonian systems with three and four degrees of freedom are presented. These systems are shown to be separable in terms of Nijenhuis coordinates. Moreover, the most general Pfaffian quasi-bi-Hamiltonian system with an arbitrary number of degrees of freedom is constructed (in terms of Nijenhuis coordinates) and its separability is proved.

1. Preliminaries

As is known, the bi-Hamiltonian structure is a peculiar property of integrable systems, both finite and infinite dimensional [1,2]. We recall some definitions. Let M be a differentiable manifold, $T M$ and $T^{*} M$ its tangent and cotangent bundle and $P_{0}, P_{1}: T^{*} M \mapsto T M$ two compatible Poisson tensors on M [1]: a vector field, X, is said to be bi-Hamiltonian with respect to P_{0} and P_{1} if two smooth functions, H and F, exist such that

$$
\begin{equation*}
X=P_{0} \mathrm{~d} H=P_{1} \mathrm{~d} F \tag{1.1}
\end{equation*}
$$

with d denoting the exterior derivative. Moreover, if P_{0} is invertible, the tensor $N:=P_{1} P_{0}^{-1}$ is a Nijenhuis (or hereditary) tensor; in terms of the gradients of the Hamiltonian functions, the bi-Hamiltonian property (1.1) entails that N^{*} (the adjoint map of N) maps iteratively $\mathrm{d} H$ into closed one-forms, so that $\mathrm{d}\left(N^{*^{i}} \mathrm{~d} H\right)=0(i=1,2, \ldots)$.

As a matter of fact, it is in general quite difficult to directly construct a bi-Hamiltonian structure for a given integrable Hamiltonian vector field; so one can try to use some reduction procedure, starting from a few 'universal' Poisson structures defined in an extended phase space. On the other hand, in the case of finite-dimensional systems arising as restricted or stationary flows from soliton equations [3, 4], the final result of the reduction procedure is some physically interesting dynamical systems (for example the Hénon-Heiles system) which, in their natural phase space, satisfy a weaker condition than the bi-Hamiltonian one. So the notion of a quasi-bi-Hamiltonian (QBH) system can be introduced [5, 6]; it was applied in [7] to dynamical systems with two degrees of freedom. One of the aims of this paper is just to give explicit examples of QBH systems with more than two degrees of freedom.
§ E-mail address: carmor@mate.polimi.it
|| E-mail address: tondo@univ.trieste.it

According to [7], a vector field, X, is said to be a QBH vector field with respect to two compatible Poisson tensors P_{0} and P_{1} if there are three smooth functions H, F, ρ such that

$$
\begin{equation*}
X=P_{0} \mathrm{~d} H=\frac{1}{\rho} P_{1} \mathrm{~d} F \tag{1.2}
\end{equation*}
$$

(ρ playing the role of an integrating factor). From this equation it follows that F is an integral of motion for X, in involution with H, so that a QBH vector field with two degrees of freedom is Liouville-integrable. Of course, equation (1.2) can be studied for an arbitrary number, n, of degrees of freedom, but the knowledge of F and H is no longer sufficient to assure the integrability of X for $n>2$. In this case, the search for integrability can be pursued using a sufficient criterion, which was recently introduced by one of the present authors (GT). Indeed, one can show the following proposition.

Proposition 1.1 ([4]). Let M be a $2 n$-dimensional symplectic manifold equipped with an invertible Poisson tensor P_{0}, and let X be a Hamiltonian vector field with Hamiltonian $H: X=P_{0} \mathrm{~d} H$. Let a tensor $N: T M \rightarrow T M$ exist such that the tensor P_{1} : $T^{*} M \rightarrow T M$ defined by $P_{1}:=N P_{0}$ is skew-symmetric. Denote by $X_{i}:=N^{i-1} X$ and $\alpha_{i}:=N^{*^{i-1}} \mathrm{~d} H(i=1,2, \ldots)$ the vector fields and the one-forms obtained by the iterated action of N and N^{*}.

If there exist $(n-1)$ independent functions $H_{i}(i=2, \ldots, n)$ and $(n(n+1) / 2-1)$ functions $\rho_{i j}(i=2, \ldots, n ; 1 \leqslant j \leqslant i)$ with $\rho_{11}=1$ and $\rho_{i i} \neq 0(i=2, \ldots, n)$, such that the one-forms α_{i} can be written as $\alpha_{i}=\sum_{j=1}^{i} \rho_{i j} \mathrm{~d} H_{j}(i=1,2, \ldots, n)$, then:
(i) the vector fields X_{i} satisfy the recursion relations $X_{i+1}=P_{0} \alpha_{i+1}=P_{1} \alpha_{i}(i=$ $1, \ldots, n-1)$.
(ii) The functions H_{i} are in involution with respect to the Poisson bracket defined by P_{0} and they are constants of motion for each field $X_{k}(k=1, \ldots, n)$.
(iii) The Hamiltonian system corresponding to the vector field, X, is Liouville-integrable. Moreover, if P_{1} is a Poisson tensor, then also X_{2} is an integrable Hamiltonian vector field and the functions H_{i} are in involution also with respect to the Poisson bracket defined by P_{1}.

This result is applied in the next section of this paper, where we consider two Hénon-Heiles-type systems with three and four degrees of freedom.

To fix the notations, on any open set of a $2 n$-dimensional symplectic manifold M, let $\left(\boldsymbol{q}=\left(q_{1}, \ldots, q_{n}\right) ; \boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right)\right)$ be a set of canonical coordinates and P_{0} the Poisson tensor $P_{0}=\left[\begin{array}{cc}0 & \boldsymbol{I} \\ -\boldsymbol{I} & 0\end{array}\right]$ (\boldsymbol{I} denoting the $n \times n$ identity matrix). Let P_{1} be a compatible Poisson tensor with respect to P_{0}, such that the Nijenhuis tensor $N:=P_{1} P_{0}^{-1}$ is maximal, i.e. it has n distinct eigenvalues $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. As is known [8], in a neighbourhood of a regular point, where the eigenvalues $\boldsymbol{\lambda}$ are independent, one can construct a canonical transformation $(\boldsymbol{q} ; \boldsymbol{p}) \mapsto(\boldsymbol{\lambda} ; \boldsymbol{\mu})\left((\boldsymbol{\lambda} ; \boldsymbol{\mu})\right.$ referred to as Nijenhuis coordinates) such that P_{1} and N take the Darboux form

$$
P_{1}=\left[\begin{array}{cc}
0 & \Lambda \tag{1.3}\\
-\Lambda & 0
\end{array}\right] \quad N=\left[\begin{array}{cc}
\Lambda & 0 \\
0 & \Lambda
\end{array}\right] \quad\left(\Lambda:=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right.
$$

A QBH vector field is said to be Pfaffian [7] if the integrating factor ρ in equation (1.2) is the product of the eigenvalues of N, i.e.

$$
\begin{equation*}
\rho=\prod_{i=1}^{n} \lambda_{i} . \tag{1.4}
\end{equation*}
$$

Working in this setting,

- in section 2 we present two Hénon-Heiles-type systems with three and four degrees of freedom, which are Pfaffian QBH systems; passing to a set of Nijenhuis coordinates, we show that the Hamilton-Jacobi equations for these systems are separable;
- in section 3 we obtain the general solution to equation (1.2) for a Pfaffian QBH vector field with an arbitrary number of degrees of freedom; the Hamiltonian H and the function F contain n arbitrary smooth functions f_{i}, each one of them depending on a single pair $\left(\lambda_{i} ; \mu_{i}\right)$ of Nijenhuis coordinates. Finally, we prove that the Hamiltonian H is separable.

2. Two Hénon-Heiles-type systems with three and four degrees of freedom

In this section we present two separable QBH systems with three and four degrees of freedom; they belong to a family of integrable flows obtained in [4] as stationary flows of the Korteweg-de Vries hierarchy [9]. This family contains the classical Hénon-Heiles system as its second member, so the higher members can be considered as multi-dimensional extensions of Hénon-Heiles.

The third member of this family, which is a stationary reduction of the seventh-order KdV flow, is defined in a six-dimensional phase space (with coordinates $\boldsymbol{q}=\left(q_{1}, q_{2}, q_{3}\right)$, $\left.\boldsymbol{p}=\left(p_{1}, p_{2}, p_{3}\right)\right)$ by the Hamiltonian vector field $X=P_{0} \mathrm{~d} H$, with the Hamiltonian function

$$
\begin{equation*}
H=\frac{1}{2}\left(2 p_{1} p_{2}+p_{3}^{2}\right)-\frac{5}{8} q_{1}^{4}+\frac{5}{2} q_{1}^{2} q_{2}+\frac{q_{1} q_{3}^{2}}{2}-\frac{q_{2}^{2}}{2} . \tag{2.1}
\end{equation*}
$$

First, we can show that the vector field X is Liouville-integrable. Indeed, if one introduces the functions
$H_{1}=H$
$H_{2}=\frac{p_{1}^{2}}{2}+p_{1} p_{2} q_{1}+p_{3}^{2} q_{1}-p_{2}^{2} q_{2}-p_{2} p_{3} q_{3}-\frac{q_{1}^{5}}{2}-\frac{q_{1}^{2} q_{3}^{2}}{4}+\frac{q_{2} q_{3}^{2}}{2}+2 q_{1} q_{2}^{2}$
$H_{3}=\frac{p_{3}^{2} q_{1}^{2}}{2}+p_{3}^{2} q_{2}-p_{1} p_{3} q_{3}-p_{2} p_{3} q_{1} q_{3}+\frac{p_{2}^{2} q_{3}^{2}}{2}+\frac{q_{1}^{3} q_{3}^{2}}{2}-q_{1} q_{2} q_{3}^{2}-\frac{q_{3}^{4}}{8}$
X satisfies the assumptions of proposition 1.1; the tensor P_{1} is given by
$P_{1}=\left[\begin{array}{cc}0 & A \\ -A^{T} & B\end{array}\right] \quad \mathbf{A}=-\left[\begin{array}{ccc}q_{1} & -1 & 0 \\ 2 q_{2} & q_{1} & q_{3} \\ q_{3} & 0 & 0\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{ccc}0 & -p_{2} & -p_{3} \\ p_{2} & 0 & 0 \\ p_{3} & 0 & 0\end{array}\right]$
and the functions $\rho_{i j}$ are: $\rho_{11}=\rho_{22}=\rho_{33}=1, \rho_{21}=\rho_{32}=-2 q_{1}, \rho_{31}=\left(3 q_{1}^{2}-2 q_{2}\right)$.
Furthermore, one easily verifies that P_{1} is a Poisson tensor, compatible with P_{0} (so that $N=P_{1} P_{0}^{-1}$ is a Nijenhuis tensor). One can show that X is a QBH vector field; in fact equation (1.2) is verified with ρ and F given by $\rho=q_{3}^{2}$ and $F=H_{3}$.

Finally, let us show the separability of this system in terms of Nijenhuis coordinates. In this case the construction of a canonical map $\Phi:(\boldsymbol{\lambda} ; \boldsymbol{\mu}) \mapsto(\boldsymbol{q} ; \boldsymbol{p})$ between a set of Nijenhuis coordinates $(\boldsymbol{\lambda} ; \boldsymbol{\mu})$ and the coordinates $(\boldsymbol{q} ; \boldsymbol{p})$ is quite simple. We observe that the matrix \mathbf{A} in equation (2.3) depends only on the coordinates \boldsymbol{q}, so also the eigenvalues $\boldsymbol{\lambda}$ depend only on $\boldsymbol{q}: q_{k}=f_{k}(\boldsymbol{\lambda})$. Then we introduce the generating function $S=\sum_{k=1}^{3} p_{k} f_{k}(\boldsymbol{\lambda})$ and
we get
$q_{1}=-\frac{1}{2}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)$
$q_{2}=-\frac{1}{8}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)^{2}+\frac{1}{2}\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\right)$
$q_{3}=\left(\lambda_{1} \lambda_{2} \lambda_{3}\right)^{1 / 2}$
$p_{1}=\frac{\lambda_{1} \mu_{1}}{\lambda_{12} \lambda_{13}}\left(-\lambda_{1}+\lambda_{2}+\lambda_{3}\right)+\frac{\lambda_{2} \mu_{2}}{\lambda_{21} \lambda_{23}}\left(\lambda_{1}-\lambda_{2}+\lambda_{3}\right)+\frac{\lambda_{3} \mu_{3}}{\lambda_{31} \lambda_{32}}\left(\lambda_{1}+\lambda_{2}-\lambda_{3}\right)$
$p_{2}=-2\left(\frac{\lambda_{1} \mu_{1}}{\lambda_{12} \lambda_{13}}+\frac{\lambda_{2} \mu_{2}}{\lambda_{21} \lambda_{23}}+\frac{\lambda_{3} \mu_{3}}{\lambda_{31} \lambda_{32}}\right)$
$p_{3}=2\left(\lambda_{1} \lambda_{2} \lambda_{3}\right)^{1 / 2}\left(\frac{\mu_{1}}{\lambda_{12} \lambda_{13}}+\frac{\mu_{2}}{\lambda_{21} \lambda_{23}}+\frac{\mu_{3}}{\lambda_{31} \lambda_{32}}\right)$
where we put, for brevity, $\lambda_{i j}:=\lambda_{i}-\lambda_{j}$. Since $\rho=q_{3}^{2}=\lambda_{1} \lambda_{2} \lambda_{3}$, we are faced with a Pfaffian system. Written in the above-mentioned Nijenhuis coordinates, the Hamiltonian function, H, given by equation (2.1) takes the form

$$
\begin{equation*}
H=\frac{\lambda_{1}\left(16 \mu_{1}^{2}-\lambda_{1}^{5}\right)}{8 \lambda_{12} \lambda_{13}}+\frac{\lambda_{2}\left(16 \mu_{2}^{2}-\lambda_{2}^{5}\right)}{8 \lambda_{21} \lambda_{23}}+\frac{\lambda_{3}\left(16 \mu_{3}^{2}-\lambda_{3}^{5}\right)}{8 \lambda_{31} \lambda_{32}} . \tag{2.5}
\end{equation*}
$$

It is easy to show that the Hamilton-Jacobi equation $H\left(\boldsymbol{\lambda}, \frac{\partial W}{\partial \lambda}\right)=h$ is separable and has the complete integral $W=\sum_{i=1}^{3} W_{i}\left(\lambda_{i} ; c_{0}, c_{1}, c_{2}\right)$, with W_{1}, W_{2} and W_{3} solutions of the following equations
$\frac{\mathrm{d} W_{i}}{\mathrm{~d} \lambda_{i}}=\left(\frac{1}{16 \lambda_{i}}\left(\lambda_{i}^{6}+c_{2} \lambda_{i}^{2}+c_{1} \lambda_{i}+c_{0}\right)\right)^{1 / 2} \quad c_{2}=8 h \quad(i=1,2,3)$.
Our second example is a Hénon-Heiles system with four degrees of freedom. It can be constructed as a stationary reduction of the ninth-order KdV flow [10]. Its phase space is eight dimensional, and the Hamiltonian is

$$
\begin{equation*}
H=\frac{1}{2}\left(p_{4}^{2}+2 p_{1} p_{3}+p_{2}^{2}\right)+\frac{3}{4} q_{1}^{5}-\frac{5}{2} q_{1}^{3} q_{2}+2 q_{1} q_{2}^{2}+\frac{5}{2} q_{1}^{2} q_{3}+\frac{q_{1} q_{4}^{2}}{2}-q_{2} q_{3} \tag{2.7}
\end{equation*}
$$

Also in this case, the vector field $X=P_{0} \mathrm{~d} H$ is Liouville-integrable. Indeed, let us consider the functions

$$
\begin{align*}
& H_{1}=H \\
& \begin{aligned}
& H_{2}= p_{1} p_{2}+ \\
& p_{2}^{2} q_{1}+p_{1} p_{3} q_{1}+p_{4}^{2} q_{1}-p_{2} p_{3} q_{2}-p_{3}^{2} q_{3}-p_{3} p_{4} q_{4} \\
& \quad+\frac{5}{8} q_{1}^{6}-\frac{5}{4} q_{1}^{4} q_{2}-q_{1}^{2} q_{2}^{2}-\frac{q_{1}^{2} q_{4}^{2}}{4}+q_{2}^{3}+\frac{q_{2} q_{4}^{2}}{2}+3 q_{1} q_{2} q_{3}-\frac{1}{2} q_{3}^{2} \\
& H_{3}= \frac{1}{2} p_{2}^{2} q_{1}^{2}+\frac{1}{2} p_{4}^{2} q_{1}^{2}+\frac{1}{2} p_{3}^{2} q_{2}^{2}+p_{2} p_{3} q_{1} q_{2}+p_{3}^{2} q_{4}^{2}-p_{3} p_{4} q_{1} q_{4} \\
& \quad-2 p_{2} p_{3} q_{3}+p_{4}^{2} q_{2}+p_{1} p_{3} q_{2}+p_{1} p_{2} q_{1}-p_{2} p_{4} q_{4}+\frac{1}{2} p_{1}^{2} \\
&+\frac{5}{4} q_{1}^{5} q_{2}-3 q_{1}^{3} q_{2}^{2}+\frac{1}{2} q_{1}^{3} q_{4}^{2}+\frac{5}{4} q_{1}^{4} q_{3}+q_{1} q_{2}^{3}-q_{1}^{2} q_{2} q_{3}-\frac{1}{2} q_{1} q_{2} q_{4}^{2} \\
&+\frac{1}{2} q_{3} q_{4}^{2}+q_{2}^{2} q_{3}+2 q_{1} q_{3}^{2}
\end{aligned} \\
& \begin{aligned}
H_{4}= & -p_{2} p_{4} q_{1} q_{4}-p_{3} p_{4} q_{2} q_{4}+p_{2} p_{3} q_{4}^{2}+p_{4}^{2} q_{1} q_{2}+p_{4}^{2} q_{3}-p_{1} p_{4} q_{4} \\
& \quad-\frac{5}{8} q_{1}^{4} q_{4}^{2}+\frac{3}{2} q_{1}^{2} q_{2} q_{4}^{2}-\frac{1}{2} q_{2}^{2} q_{4}^{2}-q_{1} q_{3} q_{4}^{2}-\frac{1}{8} q_{4}^{4}
\end{aligned}
\end{align*}
$$

and the tensor $P_{1}=\left[\begin{array}{cc}0 & A \\ -A^{T} & B\end{array}\right]$, with the matrices \mathbf{A} and \mathbf{B} given by
$\mathbf{A}=-\left[\begin{array}{cccc}q_{1} & -1 & 0 & 0 \\ q_{2} & 0 & -1 & 0 \\ 2 q_{3} & q_{2} & q_{1} & q_{4} \\ q_{4} & 0 & 0 & 0\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{cccc}0 & -p_{2} & -p_{3} & -p_{4} \\ p_{2} & 0 & 0 & 0 \\ p_{3} & 0 & 0 & 0 \\ p_{4} & 0 & 0 & 0\end{array}\right]$.
Then X verifies the assumptions of proposition 1.1 with the following choices for the functions $\rho_{i j}: \rho_{11}=\rho_{22}=\rho_{33}=\rho_{44}=1, \rho_{21}=\rho_{32}=\rho_{43}=-2 q_{1}, \rho_{31}=\rho_{42}=$ $\left(3 q_{1}^{2}-2 q_{2}\right), \rho_{41}=\left(-4 q_{1}^{3}+6 q_{1} q_{2}-2 q_{3}\right)$.

Moreover, P_{1} is a Poisson tensor, compatible with P_{0} (so that $N=P_{1} P_{0}^{-1}$ is a Nijenhuis tensor). The Hamiltonian vector field X is a QBH vector field since it satisfies the equation $X=P_{1} \mathrm{~d} F / \rho$, with $\rho=-q_{4}^{2}, F=-H_{4}$.

Finally, let us consider the map between the coordinates $(\boldsymbol{q} ; \boldsymbol{p})$ and the Nijenhuis coordinates $(\boldsymbol{\lambda} ; \boldsymbol{\mu})$. Since also in this case the matrix \mathbf{A} in equation (2.9) depends only on \boldsymbol{q}, we proceed as in the previous example. The result is

$$
\begin{align*}
& \lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}=-2 q_{1} \\
& \lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+ \lambda_{1} \lambda_{4}+\lambda_{2} \lambda_{3}+\lambda_{2} \lambda_{4}+\lambda_{3} \lambda_{4}=q_{1}^{2}+2 q_{2} \\
& \lambda_{1} \lambda_{2} \lambda_{3}+\lambda_{1} \lambda_{2} \lambda_{4}+\lambda_{2} \lambda_{3} \lambda_{4}=-2\left(q_{1} q_{2}+q_{3}\right) \\
& \lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}=- q_{4}^{2} \\
& \mu_{1}=-\frac{p_{1}}{2}- \frac{p_{4}}{2} \frac{\lambda_{2} \lambda_{3} \lambda_{4}}{\left(-\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}\right)^{1 / 2}}+\frac{p_{2}}{4}\left(-\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}\right) \\
&+\frac{p_{3}}{16}\left(-3 \lambda_{1}^{2}+2 \lambda_{1} \lambda_{2}+\lambda_{2}^{2}+2 \lambda_{1} \lambda_{3}-2 \lambda_{2} \lambda_{3}+\lambda_{3}^{2}\right. \\
&\left.+2 \lambda_{1} \lambda_{4}-2 \lambda_{2} \lambda_{4}-2 \lambda_{3} \lambda_{4}+\lambda_{4}^{2}\right) \\
& \mu_{2}=-\frac{p_{1}}{2}- \frac{p_{4}}{2} \frac{\lambda_{1} \lambda_{3} \lambda_{4}}{\left(-\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}\right)^{1 / 2}}+\frac{p_{2}}{4}\left(\lambda_{1}-\lambda_{2}+\lambda_{3}+\lambda_{4}\right) \\
&+\frac{p_{3}}{16}\left(\lambda_{1}^{2}+2 \lambda_{1} \lambda_{2}-3 \lambda_{2}^{2}-2 \lambda_{1} \lambda_{3}+2 \lambda_{2} \lambda_{3}\right. \tag{2.10}\\
&\left.+\lambda_{3}^{2}-2 \lambda_{1} \lambda_{4}+2 \lambda_{2} \lambda_{4}-2 \lambda_{3} \lambda_{4}+\lambda_{4}^{2}\right) \\
& \mu_{3}=-\frac{p_{1}}{2}- \frac{p_{4}}{2} \frac{\lambda_{1} \lambda_{2} \lambda_{4}}{\left(-\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}\right)^{1 / 2}}+\frac{p_{2}}{4}\left(\lambda_{1}+\lambda_{2}-\lambda_{3}+\lambda_{4}\right) \\
&+\frac{p_{3}}{16}\left(\lambda_{1}^{2}-2 \lambda_{1} \lambda_{2}+\lambda_{2}^{2}+2 \lambda_{1} \lambda_{3}+2 \lambda_{2} \lambda_{3}-3 \lambda_{3}^{2}\right. \\
&\left.\quad-2 \lambda_{1} \lambda_{4}-2 \lambda_{2} \lambda_{4}+2 \lambda_{3} \lambda_{4}+\lambda_{4}^{2}\right) \\
& \mu_{4}=-\frac{p_{1}}{2}- \frac{p_{4}}{2} \frac{\lambda_{1} \lambda_{2} \lambda_{3}}{\left(-\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}\right)^{1 / 2}}+\frac{p_{2}}{4}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}-\lambda_{4}\right) \\
&+\frac{p_{3}}{16}\left(\lambda_{1}^{2}-2 \lambda_{1} \lambda_{2}+\lambda_{2}^{2}-2 \lambda_{1} \lambda_{3}-2 \lambda_{2} \lambda_{3}+\lambda_{3}^{2}\right. \\
&\left.+2 \lambda_{1} \lambda_{4}+2 \lambda_{2} \lambda_{4}+2 \lambda_{3} \lambda_{4}-3 \lambda_{4}^{2}\right) .
\end{align*}
$$

By solving this system with respect to $(\boldsymbol{q} ; \boldsymbol{p})$ one can recover the canonical map Φ : $(\boldsymbol{\lambda} ; \boldsymbol{\mu}) \mapsto(\boldsymbol{q} ; \boldsymbol{p})$ which allows one to write the Hamiltonian function H given by equation (2.7) in terms of Nijenhuis coordinates; it reads
$H=\frac{\lambda_{1}\left(16 \mu_{1}^{2}-\lambda_{1}^{7}\right)}{8 \lambda_{12} \lambda_{13} \lambda_{14}}+\frac{\lambda_{2}\left(16 \mu_{2}^{2}-\lambda_{2}^{7}\right)}{8 \lambda_{21} \lambda_{23} \lambda_{24}}+\frac{\lambda_{3}\left(16 \mu_{3}^{2}-\lambda_{3}^{7}\right)}{8 \lambda_{31} \lambda_{32} \lambda_{34}}+\frac{\lambda_{4}\left(16 \mu_{4}^{2}-\lambda_{4}^{7}\right)}{8 \lambda_{41} \lambda_{42} \lambda_{43}}$.

Let us remark that also in this case the system is Pfaffian, since $\rho=-q_{4}^{2}=\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}$. Finally, one proves that the Hamilton-Jacobi equation $H\left(\boldsymbol{\lambda} ; \frac{\partial W}{\partial \lambda}\right)=h$ is separable and has the complete integral $W=\sum_{i=1}^{4} W_{i}\left(\lambda_{i} ; c_{0}, c_{1}, c_{2}, c_{3}\right)$, with W_{1}, W_{2}, W_{3} and W_{4} solutions of the following equations

$$
\begin{equation*}
\frac{\mathrm{d} W_{i}}{\mathrm{~d} \lambda_{i}}=\left(\frac{1}{16 \lambda_{i}}\left(\lambda_{i}^{8}+c_{3} \lambda_{i}^{3}+c_{2} \lambda_{i}^{2}+c_{1} \lambda_{i}+c_{0}\right)^{1 / 2} \quad c_{3}=8 h \quad(i=1,2,3,4)\right. \tag{2.12}
\end{equation*}
$$

3. Quasi-bi-Hamiltonian systems with n degrees of freedom

Let us consider a $2 n$-dimensional symplectic manifold M, a Poisson tensor P_{1} compatible with P_{0}, and let us assume to have introduced a set of Nijenhuis coordinates $(\boldsymbol{\lambda} ; \boldsymbol{\mu})$, so that P_{1} takes the Darboux form (1.3). We search for the general solution of the QBH equation (1.2) in the Pfaffian case (i.e. with ρ defined by equation (1.4)).

Proposition 3.1. In the Pfaffian case, the general solution of the equation $P_{0} \mathrm{~d} H=P_{1} \mathrm{~d} F / \rho$ is given by

$$
\begin{equation*}
H=\sum_{i=1}^{n} \frac{1}{\Delta_{i}} f_{i}\left(\lambda_{i} ; \mu_{i}\right) \quad F=\sum_{i=1}^{n} \frac{\rho_{i}}{\Delta_{i}} f_{i}\left(\lambda_{i} ; \mu_{i}\right) \tag{3.1}
\end{equation*}
$$

where $(\boldsymbol{\lambda} ; \boldsymbol{\mu})$ are Nijenhuis coordinates, $\Delta_{i}:=\Pi_{j \neq i} \lambda_{i j}\left(\lambda_{i j}:=\lambda_{i}-\lambda_{j}\right), \rho_{i}:=\rho / \lambda_{i}$ and the n functions $f_{i}\left(\lambda_{i} ; \mu_{i}\right)$ (each one of them depending on one pair of coordinates) are arbitrary smooth functions.

Proof. Equation (1.2) corresponds to the two sets of equations

$$
\begin{array}{ll}
\frac{\partial H}{\partial \mu_{i}}=\frac{\lambda_{i}}{\rho} \frac{\partial F}{\partial \mu_{i}} & (i=1,2, \ldots, n) \\
\frac{\partial H}{\partial \lambda_{i}}=\frac{\lambda_{i}}{\rho} \frac{\partial F}{\partial \lambda_{i}} & (i=1,2, \ldots, n) \tag{3.3}
\end{array}
$$

The general solution of the first set is

$$
\begin{equation*}
H=\frac{1}{\rho} \sum_{i=1}^{n} \lambda_{i} G_{i}\left(\boldsymbol{\lambda} ; \mu_{i}\right)+K(\boldsymbol{\lambda}) \quad F=\sum_{i=1}^{n} G_{i}\left(\boldsymbol{\lambda} ; \mu_{i}\right) \tag{3.4}
\end{equation*}
$$

where the functions $G_{i}=G_{i}\left(\boldsymbol{\lambda} ; \mu_{i}\right)$ and $K=K(\boldsymbol{\lambda})$ are arbitrary. Indeed, the solution to the first equation (3.2), for $i=1$, is $H=\frac{\lambda_{1}}{\rho} F(\boldsymbol{\lambda} ; \boldsymbol{\mu})+\phi_{1}\left(\boldsymbol{\lambda} ; \mu_{2}, \ldots, \mu_{n}\right)$, with ϕ_{1} arbitrary; on account of this result, equation (3.2) for $i=2$ has the solution

$$
\begin{align*}
& H=\frac{\lambda_{1}}{\rho} G_{1}\left(\boldsymbol{\lambda} ; \mu_{1}\right)+\frac{\lambda_{2}}{\rho} \psi_{1}\left(\boldsymbol{\lambda} ; \mu_{2}, \ldots, \mu_{n}\right)+\phi_{2}\left(\boldsymbol{\lambda} ; \mu_{3}, \ldots, \mu_{n}\right) \tag{3.5}\\
& F=G_{1}\left(\boldsymbol{\lambda} ; \mu_{1}\right)+\psi_{1}\left(\boldsymbol{\lambda} ; \mu_{2}, \ldots, \mu_{n}\right)
\end{align*}
$$

with ψ_{1} and ϕ_{2} arbitrary. Iterating this procedure for $i=3, \ldots, n$ one easily obtains solution (3.4). Let us insert this solution into equation (3.3), putting into evidence the dependence on $\boldsymbol{\mu}$; we conclude that $K(\boldsymbol{\lambda})$ has to be a constant function (which can be taken as being equal to zero without loss of generality) and that equation (3.3) can be written as

$$
\begin{equation*}
\frac{\partial}{\partial \lambda_{i}}\left(\sum_{j=1}^{n} \lambda_{i j} G_{j}\right)=\frac{1}{\lambda_{i}}\left(\sum_{j=1}^{n} \lambda_{i j} G_{j}\right) \quad(i=1,2, \ldots, n) . \tag{3.6}
\end{equation*}
$$

By integrating these equations $(i=1,2, \ldots, n)$ and taking into account the dependence on $\boldsymbol{\mu}$, we easily obtain that

$$
\begin{equation*}
G_{i}(\boldsymbol{\lambda} ; \boldsymbol{\mu})=\frac{\rho_{i}}{\Delta_{i}} f_{i}\left(\lambda_{i} ; \mu_{i}\right) \quad(i=1,2, \ldots, n) \tag{3.7}
\end{equation*}
$$

where each f_{i} is an arbitrary function depending only on the pair of variables $\left(\lambda_{i} ; \mu_{i}\right)$.
Of course, the vector field $X=P_{0} \mathrm{~d} H$ is a QBH vector field in $2 n$ dimensions.
Finally, from the above result, we can also prove that the Hamiltonian H and the function F are separable.
Proposition 3.2. The Hamiltonian H and the function F, written in terms of the Nijenhuis coordinates $(\boldsymbol{\lambda} ; \boldsymbol{\mu})$ in the form of (3.1), are separable for each n-ple of functions $f_{i}\left(\lambda_{i} ; \mu_{i}\right)$.

Proof. The Hamilton-Jacobi equation for H is separable iff H verifies the Levi-Civita conditions $L_{i j}(H)=0(i, j=1, \ldots, n ; i \neq j)$ where [11]
$L_{i j}(H)=\frac{\partial H}{\partial \lambda_{i}} \frac{\partial H}{\partial \lambda_{j}} \frac{\partial^{2} H}{\partial \mu_{i} \partial \mu_{j}}+\frac{\partial H}{\partial \mu_{i}} \frac{\partial H}{\partial \mu_{j}} \frac{\partial^{2} H}{\partial \lambda_{i} \partial \lambda_{j}}-\frac{\partial H}{\partial \lambda_{i}} \frac{\partial H}{\partial \mu_{j}} \frac{\partial^{2} H}{\partial \mu_{i} \partial \lambda_{j}}-\frac{\partial H}{\partial \lambda_{j}} \frac{\partial H}{\partial \mu_{i}} \frac{\partial^{2} H}{\partial \mu_{j} \partial \lambda_{i}}$.

In our case, it is $\partial^{2} H / \partial \mu_{i} \partial \mu_{j}=0$ and

$$
\begin{equation*}
\frac{\partial \Delta_{j}}{\partial \lambda_{j}}=\Delta_{j} \sum_{\alpha \neq j} \lambda_{j \alpha}^{-1} \quad \frac{\partial \Delta_{j}}{\partial \lambda_{\beta}}=-\Delta_{j} \lambda_{j \beta}^{-1} \quad(\beta \neq j) \tag{3.9}
\end{equation*}
$$

It may be useful to decompose $L_{i j}(H)$ as $L_{i j}(H)=M_{i j}(H)+N_{i j}(H)$, where $M_{i j}(H)$ depends linearly on the functions f_{i}, and $N_{i j}(H)$ depends on the derivatives $\partial f_{i} / \partial \lambda_{i}$ but not on f_{i}. By using equation (3.9) one can directly verify that $M_{i j}(H)=0$ and $N_{i j}(H)=0$. Similarly, one can show that the Levi-Civita conditions (3.8) are fulfilled also by the function F given in (3.1).

Acknowledgments

We thank an anonymous referee for useful remarks and for pointing out to us reference [5].
This work has been partially supported by the GNFM of the Italian CNR and by the project 'Metodi Geometrici e probabilistici in Fisica Matematica' of the Italian MURST.

References

[1] Magri F 1978 A simple model of the integrable Hamiltonian equation J. Math. Phys. 19 1156-62
[2] Olver P J 1993 Applications of Lie Groups to Differential Equations 2nd edn (New York: Springer)
[3] Antonowicz M and Rauch-Wojciechowski S 1992 How to construct finite dimensional bi-Hamiltonian systems from soliton equations: Jacobi integrable potentials J. Math. Phys. 33 2115-25
[4] Tondo G 1995 On the integrability of stationary and restricted flows of the KdV hierarchy J. Phys. A: Math. Gen. 28 5097-115
[5] Ravoson V $1992(\rho, s)$-structure Bi-Hamiltonienne, séparabilité, paires de Lax et integrabilité Thèse de Doctorat de Math. Appliquées Université Pau et Pays de l'Adour
[6] Caboz R, Ravoson V and Gavrilov L 1991 Bi-Hamiltonian structure of an integrable Hénon-Heiles system J. Phys. A: Math. Gen. 24 L523-5
[7] Brouzet R, Caboz R, Rabenivo J and Ravoson V 1996 Two degrees of freedom quasi bi-Hamiltonian systems J. Phys. A: Math. Gen. 29 2069-76
[8] Magri F and Marsico T 1996 Some developments of the concepts of Poisson manifolds in the sense of A Lichnerowicz Gravitation, Electromagnetism and Geometrical Structures ed G Ferrarese (Bologna: Pitagora) pp 207-22
[9] Dickey L A 1991 Soliton Equations and Hamiltonian Systems (Singapore: World Scientific)
[10] Tondo G 1996 On the integrability of Hénon-Heiles type systems Non Linear Physics Theory and Experiment ed E Alfinito et al (Singapore: World Scientific) pp 313-20
[11] Levi-Civita T 1904 Sulla integrazione della equazione di Hamilton-Jacobi per separazione di variabili Math. Ann. 59 383-97

