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Quasi-bi-Hamiltonian systems and separability
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Italy
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I-34127 Trieste, Italy

Received 12 November 1996

Abstract. Two quasi-bi-Hamiltonian systems with three and four degrees of freedom are
presented. These systems are shown to be separable in terms of Nijenhuis coordinates.
Moreover, the most general Pfaffian quasi-bi-Hamiltonian system with an arbitrary number
of degrees of freedom is constructed (in terms of Nijenhuis coordinates) and its separability is
proved.

1. Preliminaries

As is known, the bi-Hamiltonian structure is a peculiar property of integrable systems, both
finite and infinite dimensional [1, 2]. We recall some definitions. LetM be a differentiable
manifold, TM andT ∗M its tangent and cotangent bundle andP0, P1 : T ∗M 7→ TM two
compatible Poisson tensors onM [1]: a vector field,X, is said to be bi-Hamiltonian with
respect toP0 andP1 if two smooth functions,H andF , exist such that

X = P0 dH = P1 dF (1.1)

with d denoting the exterior derivative. Moreover, ifP0 is invertible, the tensorN := P1P
−1
0

is a Nijenhuis (or hereditary) tensor; in terms of the gradients of the Hamiltonian functions,
the bi-Hamiltonian property (1.1) entails thatN∗ (the adjoint map ofN ) maps iteratively
dH into closed one-forms, so that d(N∗

i

dH) = 0 (i = 1, 2, . . .).
As a matter of fact, it is in general quite difficult to directly construct a bi-Hamiltonian

structure for a given integrable Hamiltonian vector field; so one can try to use some reduction
procedure, starting from a few ‘universal’ Poisson structures defined in an extended phase
space. On the other hand, in the case of finite-dimensional systems arising as restricted or
stationary flows from soliton equations [3, 4], the final result of the reduction procedure
is some physically interesting dynamical systems (for example the Hénon–Heiles system)
which, in their natural phase space, satisfy a weaker condition than the bi-Hamiltonian one.
So the notion of a quasi-bi-Hamiltonian (QBH) system can be introduced [5, 6]; it was
applied in [7] to dynamical systems with two degrees of freedom. One of the aims of this
paper is just to give explicit examples of QBH systems with more than two degrees of
freedom.
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According to [7], a vector field,X, is said to be a QBH vector field with respect to two
compatible Poisson tensorsP0 andP1 if there are three smooth functionsH,F, ρ such that

X = P0 dH = 1

ρ
P1 dF (1.2)

(ρ playing the role of an integrating factor). From this equation it follows thatF is an
integral of motion forX, in involution withH , so that a QBH vector field with two degrees
of freedom is Liouville-integrable. Of course, equation (1.2) can be studied for an arbitrary
number,n, of degrees of freedom, but the knowledge ofF andH is no longer sufficient
to assure the integrability ofX for n > 2. In this case, the search for integrability can be
pursued using a sufficient criterion, which was recently introduced by one of the present
authors (GT). Indeed, one can show the following proposition.

Proposition 1.1 ([4]).Let M be a 2n-dimensional symplectic manifold equipped with an
invertible Poisson tensorP0, and letX be a Hamiltonian vector field with Hamiltonian
H : X = P0 dH . Let a tensorN : TM → TM exist such that the tensorP1 :
T ∗M → TM defined byP1 := NP0 is skew-symmetric. Denote byXi := Ni−1X and
αi := N∗i−1

dH (i = 1, 2, . . .) the vector fields and the one-forms obtained by the iterated
action ofN andN∗.

If there exist(n − 1) independent functionsHi (i = 2, . . . , n) and (n(n + 1)/2− 1)
functionsρij (i = 2, . . . , n; 1 6 j 6 i) with ρ11 = 1 andρii 6= 0 (i = 2, . . . , n), such that
the one-formsαi can be written asαi =

∑i
j=1 ρij dHj (i = 1, 2, . . . , n), then:

(i) the vector fieldsXi satisfy the recursion relationsXi+1 = P0 αi+1 = P1 αi (i =
1, . . . , n− 1).

(ii) The functionsHi are in involution with respect to the Poisson bracket defined by
P0 and they are constants of motion for each fieldXk (k = 1, . . . , n).

(iii) The Hamiltonian system corresponding to the vector field,X, is Liouville-integrable.
Moreover, ifP1 is a Poisson tensor, then alsoX2 is an integrable Hamiltonian vector field
and the functionsHi are in involution also with respect to the Poisson bracket defined by
P1.

This result is applied in the next section of this paper, where we consider two Hénon–
Heiles-type systems with three and four degrees of freedom.

To fix the notations, on any open set of a 2n-dimensional symplectic manifoldM, let
(q = (q1, . . . , qn); p = (p1, . . . , pn)) be a set of canonical coordinates andP0 the Poisson

tensorP0 =
[

0 I

−I 0

]
(I denoting then×n identity matrix). LetP1 be a compatible Poisson

tensor with respect toP0, such that the Nijenhuis tensorN := P1P
−1
0 is maximal, i.e. it

has n distinct eigenvaluesλ = (λ1, . . . , λn). As is known [8], in a neighbourhood of
a regular point, where the eigenvaluesλ are independent, one can construct a canonical
transformation(q;p) 7→ (λ;µ) ((λ;µ) referred to as Nijenhuis coordinates) such thatP1

andN take the Darboux form

P1 =
[

0 3

−3 0

]
N =

[
3 0
0 3

]
(3 := diag(λ1, . . . , λn). (1.3)

A QBH vector field is said to be Pfaffian [7] if the integrating factorρ in equation (1.2) is
the product of the eigenvalues ofN , i.e.

ρ = 5n
i=1λi. (1.4)

Working in this setting,
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• in section 2 we present two Hénon–Heiles-type systems with three and four degrees
of freedom, which are Pfaffian QBH systems; passing to a set of Nijenhuis coordinates, we
show that the Hamilton–Jacobi equations for these systems are separable;
• in section 3 we obtain the general solution to equation (1.2) for a Pfaffian QBH vector

field with an arbitrary number of degrees of freedom; the HamiltonianH and the function
F containn arbitrary smooth functionsfi , each one of them depending on a single pair
(λi;µi) of Nijenhuis coordinates. Finally, we prove that the HamiltonianH is separable.

2. Two Hénon–Heiles-type systems with three and four degrees of freedom

In this section we present two separable QBH systems with three and four degrees of
freedom; they belong to a family of integrable flows obtained in [4] as stationary flows
of the Korteweg–de Vries hierarchy [9]. This family contains the classical Hénon–Heiles
system as its second member, so the higher members can be considered as multi-dimensional
extensions of H́enon–Heiles.

The third member of this family, which is a stationary reduction of the seventh-order
KdV flow, is defined in a six-dimensional phase space (with coordinatesq = (q1, q2, q3),
p = (p1, p2, p3)) by the Hamiltonian vector fieldX = P0 dH , with the Hamiltonian function

H = 1

2
(2p1p2+ p2

3)−
5

8
q4

1 +
5

2
q2

1q2+ q1q
2
3

2
− q

2
2

2
. (2.1)

First, we can show that the vector fieldX is Liouville-integrable. Indeed, if one introduces
the functions

H1 = H

H2 = p2
1

2
+ p1p2q1+ p2

3q1− p2
2q2− p2p3q3− q

5
1

2
− q

2
1q

2
3

4
+ q2q

2
3

2
+ 2q1q

2
2

H3 = p2
3q

2
1

2
+ p2

3q2− p1p3q3− p2p3q1q3+ p
2
2q

2
3

2
+ q

3
1q

2
3

2
− q1q2q

2
3 −

q4
3

8

(2.2)

X satisfies the assumptions of proposition 1.1; the tensorP1 is given by

P1 =
[

0 A

−AT B

]
A = −

[
q1 −1 0

2q2 q1 q3

q3 0 0

]
B =

[ 0 −p2 −p3

p2 0 0
p3 0 0

]
(2.3)

and the functionsρij are: ρ11 = ρ22 = ρ33 = 1, ρ21 = ρ32 = −2q1, ρ31 = (3q2
1 − 2q2).

Furthermore, one easily verifies thatP1 is a Poisson tensor, compatible withP0 (so that
N = P1P

−1
0 is a Nijenhuis tensor). One can show thatX is a QBH vector field; in fact

equation (1.2) is verified withρ andF given byρ = q2
3 andF = H3.

Finally, let us show the separability of this system in terms of Nijenhuis coordinates. In
this case the construction of a canonical map8 : (λ;µ) 7→ (q;p) between a set of Nijenhuis
coordinates(λ;µ) and the coordinates(q;p) is quite simple. We observe that the matrix
A in equation (2.3) depends only on the coordinatesq, so also the eigenvaluesλ depend
only onq: qk = fk(λ). Then we introduce the generating functionS =∑3

k=1pkfk(λ) and
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we get

q1 = − 1
2(λ1+ λ2+ λ3)

q2 = − 1
8(λ1+ λ2+ λ3)

2+ 1
2(λ1λ2+ λ1λ3+ λ2λ3)

q3 = (λ1λ2λ3)
1/2

p1 = λ1µ1

λ12λ13
(−λ1+ λ2+ λ3)+ λ2µ2

λ21λ23
(λ1− λ2+ λ3)+ λ3µ3

λ31λ32
(λ1+ λ2− λ3)

p2 = −2

(
λ1µ1

λ12λ13
+ λ2µ2

λ21λ23
+ λ3µ3

λ31λ32

)
p3 = 2(λ1λ2λ3)

1/2

(
µ1

λ12λ13
+ µ2

λ21λ23
+ µ3

λ31λ32

)
(2.4)

where we put, for brevity,λij := λi − λj . Sinceρ = q2
3 = λ1λ2λ3, we are faced with

a Pfaffian system. Written in the above-mentioned Nijenhuis coordinates, the Hamiltonian
function,H , given by equation (2.1) takes the form

H = λ1(16µ2
1− λ5

1)

8λ12λ13
+ λ2(16µ2

2− λ5
2)

8λ21λ23
+ λ3(16µ2

3− λ5
3)

8λ31λ32
. (2.5)

It is easy to show that the Hamilton–Jacobi equationH(λ, ∂W
∂λ
) = h is separable and has

the complete integralW = ∑3
i=1Wi(λi; c0, c1, c2), with W1, W2 andW3 solutions of the

following equations

dWi

dλi
=
(

1

16λi
(λ6
i + c2λ

2
i + c1λi + c0)

)1/2

c2 = 8h (i = 1, 2, 3). (2.6)

Our second example is a Hénon–Heiles system with four degrees of freedom. It can be
constructed as a stationary reduction of the ninth-order KdV flow [10]. Its phase space is
eight dimensional, and the Hamiltonian is

H = 1

2
(p2

4 + 2p1p3+ p2
2)+

3

4
q5

1 −
5

2
q3

1q2+ 2q1q
2
2 +

5

2
q2

1q3+ q1q
2
4

2
− q2q3. (2.7)

Also in this case, the vector fieldX = P0 dH is Liouville-integrable. Indeed, let us consider
the functions

H1 = H
H2 = p1p2+ p2

2q1+ p1p3q1+ p2
4q1− p2p3q2− p2

3q3− p3p4q4

+5

8
q6

1 −
5

4
q4

1q2− q2
1q

2
2 −

q2
1q

2
4

4
+ q3

2 +
q2q

2
4

2
+ 3q1q2q3− 1

2
q2

3

H3 = 1
2p

2
2q

2
1 + 1

2p
2
4q

2
1 + 1

2p
2
3q

2
2 + p2p3q1q2+ p2

3q
2
4 − p3p4q1q4

−2p2p3q3+ p2
4q2+ p1p3q2+ p1p2q1− p2p4q4+ 1

2p
2
1

+ 5
4q

5
1q2− 3q3

1q
2
2 + 1

2q
3
1q

2
4 + 5

4q
4
1q3+ q1q

3
2 − q2

1q2q3− 1
2q1q2q

2
4

+ 1
2q3q

2
4 + q2

2q3+ 2q1q
2
3

H4 = −p2p4q1q4− p3p4q2q4+ p2p3q
2
4 + p2

4q1q2+ p2
4q3− p1p4q4

− 5
8q

4
1q

2
4 + 3

2q
2
1q2q

2
4 − 1

2q
2
2q

2
4 − q1q3q

2
4 − 1

8q
4
4

(2.8)
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and the tensorP1 =
[

0 A

−AT B

]
, with the matricesA andB given by

A = −


q1 −1 0 0
q2 0 −1 0
2q3 q2 q1 q4

q4 0 0 0

 B =


0 −p2 −p3 −p4

p2 0 0 0
p3 0 0 0
p4 0 0 0

 . (2.9)

Then X verifies the assumptions of proposition 1.1 with the following choices for the
functions ρij : ρ11 = ρ22 = ρ33 = ρ44 = 1, ρ21 = ρ32 = ρ43 = −2q1, ρ31 = ρ42 =
(3q2

1 − 2q2), ρ41 = (−4q3
1 + 6q1q2− 2q3).

Moreover,P1 is a Poisson tensor, compatible withP0 (so thatN = P1P
−1
0 is a Nijenhuis

tensor). The Hamiltonian vector fieldX is a QBH vector field since it satisfies the equation
X = P1 dF/ρ, with ρ = −q2

4, F = −H4.
Finally, let us consider the map between the coordinates(q;p) and the Nijenhuis

coordinates(λ;µ). Since also in this case the matrixA in equation (2.9) depends only
on q, we proceed as in the previous example. The result is

λ1+ λ2+ λ3+ λ4 = −2q1

λ1λ2+ λ1λ3+ λ1λ4+ λ2λ3+ λ2λ4+ λ3λ4 = q2
1 + 2q2

λ1λ2λ3+ λ1λ2λ4+ λ2λ3λ4 = −2(q1q2+ q3)

λ1λ2λ3λ4 = −q2
4

µ1 = −p1

2
− p4

2

λ2λ3λ4

(−λ1λ2λ3λ4)1/2
+ p2

4
(−λ1+ λ2+ λ3+ λ4)

+p3

16
(−3λ2

1+ 2λ1λ2+ λ2
2+ 2λ1λ3− 2λ2λ3+ λ2

3

+2λ1λ4− 2λ2λ4− 2λ3λ4+ λ2
4)

µ2 = −p1

2
− p4

2

λ1λ3λ4

(−λ1λ2λ3λ4)1/2
+ p2

4
(λ1− λ2+ λ3+ λ4)

+p3

16
(λ2

1+ 2λ1λ2− 3λ2
2− 2λ1λ3+ 2λ2λ3

+λ2
3− 2λ1λ4+ 2λ2λ4− 2λ3λ4+ λ2

4)

µ3 = −p1

2
− p4

2

λ1λ2λ4

(−λ1λ2λ3λ4)1/2
+ p2

4
(λ1+ λ2− λ3+ λ4)

+p3

16
(λ2

1− 2λ1λ2+ λ2
2+ 2λ1λ3+ 2λ2λ3− 3λ2

3

−2λ1λ4− 2λ2λ4+ 2λ3λ4+ λ2
4)

µ4 = −p1

2
− p4

2

λ1λ2λ3

(−λ1λ2λ3λ4)1/2
+ p2

4
(λ1+ λ2+ λ3− λ4)

+p3

16
(λ2

1− 2λ1λ2+ λ2
2− 2λ1λ3− 2λ2λ3+ λ2

3

+2λ1λ4+ 2λ2λ4+ 2λ3λ4− 3λ2
4).

(2.10)

By solving this system with respect to(q;p) one can recover the canonical map8 :
(λ;µ) 7→ (q;p) which allows one to write the Hamiltonian functionH given by
equation (2.7) in terms of Nijenhuis coordinates; it reads

H = λ1(16µ2
1− λ7

1)

8λ12λ13λ14
+ λ2(16µ2

2− λ7
2)

8λ21λ23λ24
+ λ3(16µ2

3− λ7
3)

8λ31λ32λ34
+ λ4(16µ2

4− λ7
4)

8λ41λ42λ43
. (2.11)
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Let us remark that also in this case the system is Pfaffian, sinceρ = −q2
4 = λ1λ2λ3λ4.

Finally, one proves that the Hamilton–Jacobi equationH(λ; ∂W
∂λ
) = h is separable and has

the complete integralW = ∑4
i=1Wi(λi; c0, c1, c2, c3), with W1, W2, W3 andW4 solutions

of the following equations

dWi

dλi
=
(

1

16λi
(λ8
i + c3λ

3
i + c2λ

2
i + c1λi + c0

)1/2

c3 = 8h (i = 1, 2, 3, 4).

(2.12)

3. Quasi-bi-Hamiltonian systems withn degrees of freedom

Let us consider a 2n-dimensional symplectic manifoldM, a Poisson tensorP1 compatible
with P0, and let us assume to have introduced a set of Nijenhuis coordinates(λ;µ), so
that P1 takes the Darboux form (1.3). We search for the general solution of the QBH
equation (1.2) in the Pfaffian case (i.e. withρ defined by equation (1.4)).

Proposition 3.1.In the Pfaffian case, the general solution of the equationP0 dH = P1 dF/ρ
is given by

H =
n∑
i=1

1

1i

fi(λi;µi) F =
n∑
i=1

ρi

1i

fi(λi;µi) (3.1)

where(λ;µ) are Nijenhuis coordinates,1i := 5j 6=iλij (λij := λi−λj ), ρi := ρ/λi and the
n functionsfi(λi;µi) (each one of them depending on one pair of coordinates) are arbitrary
smooth functions.

Proof. Equation (1.2) corresponds to the two sets of equations

∂H

∂µi
= λi

ρ

∂F

∂µi
(i = 1, 2, . . . , n) (3.2)

∂H

∂λi
= λi

ρ

∂F

∂λi
(i = 1, 2, . . . , n). (3.3)

The general solution of the first set is

H = 1

ρ

n∑
i=1

λiGi(λ;µi)+K(λ) F =
n∑
i=1

Gi(λ;µi) (3.4)

where the functionsGi = Gi(λ;µi) andK = K(λ) are arbitrary. Indeed, the solution to
the first equation (3.2), fori = 1, isH = λ1

ρ
F (λ;µ)+φ1(λ;µ2, . . . , µn), with φ1 arbitrary;

on account of this result, equation (3.2) fori = 2 has the solution

H = λ1

ρ
G1(λ;µ1)+ λ2

ρ
ψ1(λ;µ2, . . . , µn)+ φ2(λ;µ3, . . . , µn)

F = G1(λ;µ1)+ ψ1(λ;µ2, . . . , µn)

(3.5)

with ψ1 andφ2 arbitrary. Iterating this procedure fori = 3, . . . , n one easily obtains solution
(3.4). Let us insert this solution into equation (3.3), putting into evidence the dependence
on µ; we conclude thatK(λ) has to be a constant function (which can be taken as being
equal to zero without loss of generality) and that equation (3.3) can be written as

∂

∂λi

( n∑
j=1

λijGj

)
= 1

λi

( n∑
j=1

λijGj

)
(i = 1, 2, . . . , n). (3.6)
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By integrating these equations(i = 1, 2, . . . , n) and taking into account the dependence on
µ, we easily obtain that

Gi(λ;µ) = ρi

1i

fi(λi;µi) (i = 1, 2, . . . , n) (3.7)

where eachfi is an arbitrary function depending only on the pair of variables(λi;µi). �
Of course, the vector fieldX = P0 dH is a QBH vector field in 2n dimensions.
Finally, from the above result, we can also prove that the HamiltonianH and the

functionF are separable.

Proposition 3.2.The HamiltonianH and the functionF , written in terms of the Nijenhuis
coordinates(λ;µ) in the form of (3.1), are separable for eachn-ple of functionsfi(λi;µi).
Proof. The Hamilton–Jacobi equation forH is separable iffH verifies the Levi-Civita
conditionsLij (H) = 0 (i, j = 1, . . . , n; i 6= j) where [11]

Lij (H) = ∂H

∂λi

∂H

∂λj

∂2H

∂µi∂µj
+ ∂H

∂µi

∂H

∂µj

∂2H

∂λi∂λj
− ∂H
∂λi

∂H

∂µj

∂2H

∂µi∂λj
− ∂H
∂λj

∂H

∂µi

∂2H

∂µj∂λi
.

(3.8)

In our case, it is∂2H/∂µi∂µj = 0 and

∂1j

∂λj
= 1j

∑
α 6=j

λ−1
jα

∂1j

∂λβ
= −1jλ−1

jβ (β 6= j). (3.9)

It may be useful to decomposeLij (H) as Lij (H) = Mij (H) + Nij (H), whereMij (H)

depends linearly on the functionsfi , andNij (H) depends on the derivatives∂fi/∂λi but
not onfi . By using equation (3.9) one can directly verify thatMij (H) = 0 andNij (H) = 0.
Similarly, one can show that the Levi-Civita conditions (3.8) are fulfilled also by the function
F given in (3.1). �
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